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KELLER VANDEBOGERT

1. Exercise 1.20

(a). Suppose X is star shaped about x0. Then our homotopy is natu-

rally F (t, x) := tx + (1 − t)x0, x ∈ X and t ∈ [0, 1]. By definition of

star shaped, this segment must lie within X.

(b). Setting x0 = 0 in the above homotopy formula, we have that

F (t, x) = tx. Now consider a p-form ω. First compute F ∗ω:

F ∗ω(s,x)

(
(δs, δx), (δ′s, δ′x)

)
= ωsx(δ(sx), δ′(sx))

= ωsx(xδs+ sδx, xδ′s+ sδ′x)
(1.1)

Where δs, δx are tangent vectors at (s, t). Now take the interior

product with V (s, x) = (1, 0):

iV ωsx(xδs+ sδx, xδ′s+ sδ′x) = ωsx(xδs(1, 0) + sδx(1, 0), xδ′s+ sδ′x)

= ωsx(x, sδx) + ωsx(x, xδs)

= ωsx(x, δx)s

(1.2)

Now consider the pullback of G := etV ◦ J which takes x 7→ (t, x).

Then this is merely the change of variable sending s 7→ t. To see this,

merely rewrite:
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= ωsx(x, δx)s = ωF (s,t)(δF (s, x)(1, 0), δ′F (s, x))

Then our pullback becomes:

[etV ◦ J ]∗ωF (s,t)(δF (s, x)(1, 0), δ′F (s, x)) = ωF (G(x))(δF (G(x))(1, 0), δ′F (G(x)))

= ωtx(x, δx)t

(1.3)

Finally, integrating from 0 to 1:

Hω(δx) =

ˆ 1

0

ωtx(x, δx)tdt

And for a constant form, ωtx = ω so that

Hω(δx) = ω(x, δx)

ˆ 1

0

tdt =
1

2
ω(x, δx)

(c). Consider the case for any p-form ω. Our pullback F ∗ becomes:

F ∗ω
(

(δ1x, δ1x), . . . , δps, δpx)
)

= ωsx

(
δ1(sx), . . . , δp(sx)

)
= ωsx

(
sδ1x+ xδ1s, . . . , sδpx+ xδps

)
(1.4)

And computing the interior product similarly:

iV ωsx

(
sδ1x+ xδ1s, . . . , sδpx+ xδps

)
= ωsx

(
sδ1x(1, 0) + xδ1s(1, 0), . . . , sδpx+ xδps

)
= ωsx

(
x, . . . , sδpx+ xδps

)
= ωsx

(
x, δ2x, . . . , δpx

)
sp−1

(1.5)

Arguing identically as in part (b), the pullback by etV ◦ J merely

sends s 7→ t, so we derive the general case:
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Hω(δ2x, . . . , δpx) =

ˆ 1

0

ωtx(x, δ2x, . . . , δpx
)
tp−1dt

And for a constant form,

Hω(δ2x, . . . , δpx) =
1

p
ω(δ2x, . . . , δpx)

And we are done.

2. Problem 1.21

(a). We first check that θ = (2xy + z2)dx + x2dy + 2xzdz is in fact

closed:

dθ = (2ydx+ 2xdy + 2zdz) ∧ dx+ (2xdx) ∧ dy + (2zdx+ 2xdz) ∧ dz

= −2xdx ∧ dy + 2zdz ∧ dx+ 2xdx ∧ dy − 2zdz ∧ dx

= 0

(2.1)

So that θ is closed. Now, using the formula from 1.20, we know:

dHω = ω

Where Hω =
´ 1
0
ωtx(δx)dt. Then, in our case we see the triple

(x, y, z) 7→ (tx, ty, tz) and (dx, dy, dz) 7→ (x, y, z) (this works because

evaluating our one forms merely results a replacement). Using this, θ

is mapped to the 0-form:

θ 7→ t2(2xy + z2)x+ t2x2y + t22xz2

And integrating from 0 to 1, we find our antiderivative:

Hθ = x2y + xz2
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(b). Again, we check that ω = (x2− 2xy)dy∧dz+ (y2− 2yz)dz∧dx+

(z2 − 2zx)dx ∧ dy is closed:

dω = (2xdx− 2ydx− 2xdy) ∧ dy ∧ dz

+ (2ydy − 2zdy − 2ydz) ∧ dz ∧ dx

+ (2zdz − 2zdx− 2xdz) ∧ dx ∧ dy

= (2x− 2y)dx ∧ dy ∧ dz + (2y − 2z)dy ∧ dz ∧ dx+ (2z − 2x)dz ∧ dx ∧ dy

= (2x− 2y + 2y − 2z + 2z − 2x)dx ∧ dy ∧ dz = 0

(2.2)

So ω is exact. Now, using the derived formula from 1.20 again,

(x, y, z) 7→ (tx, ty, tz) and we evaluate our vector fields at each of x, y

and z. The final result becomes

Hω =
yz(2x+ y − 3z)

4
dx− xz(3x− 2y − z)

4
dy +

xy(x− 3y + 2z)

4
dz

And this is an antiderivative (note that this is not unique! We can

find a simpler antiderivative just by inspection).

3. Exercise 1.22

Compute the pullback of F (ρ, φ) as recommended in the hint. We

see that x = ρ cosφ, y = ρ sinφ, and

dx = cosφdρ− ρ sinφdφ

dy = sinφdρ+ ρ cosφdφ

Plugging in,
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F ∗ω = ρ−2(ρ sinφ cosφdρ+ ρ2 cos2 φφdφ)− ρ−2(ρ sinφ cosφdρ− ρ2 sin2 φdφ

= ρ−2
(
ρ2(cos2 φ+ sin2 φ)

)
dφ = dφ

(3.1)

This shows that ω is closed automatically since ddφ = 0.

Now, note that this would imply that φ = φ(x, y) is our antideriv-

ative. Hence, as φ → π, we see that φ(x, y) → φ(−1, 0) = π, and

likewise as φ→ −π, φ(x, y)→ φ(−1, 0) = −π. But this is impossible,

as φ(−1, 0) now takes on two different values.


